
1

Novel Solver Algorithms for Nearly Singular Linear Systems Arising in
Combustion Modelling

Presentation originally given at 2022 SIAM Conference on Parallel Processing for Scientific Computing, Wednesday, February
23, 2022

Paul Mullowney, NREL and Stephen Thomas, AMD
Arielle K. Carr, Lehigh University
Katarzyna Swirydowicz, PNNL
Marcus Day and Lucas Esclapez, NREL

2

Abstract

Direct Numerical Simulations of realistic combustion devices are extremely challenging due to the wide
separation of scales in the simulation, for example an internal combustion (IC) engine chamber, and the flame
thickness of a high-pressure flame. The PeleLMeX solver uses adaptive mesh refinement (AMR) to evolve multi-
species reacting flows in the low Mach number limit at the Exascale and relies on an embedded boundary (EB)
approach to represent complex geometries. In that framework, the EB geometries often give rise to very small
cut-cells along the boundary, which translate into extreme ill-conditioning of the pressure-projection, with
eigenvalues that span 15-16 orders of magnitude. In this talk, we focus on the case of a typical IC piston bowl
geometry for which we present on a novel approach towards solving these nearly singular linear systems with
ILU-based, C-AMG smoothers on massively parallel architectures. In particular, we use scaling and equilibration
algorithms to handle the non-normality of the upper triangular factors. This enables us to approximate the
highly sequential triangular solve algorithm, embedded in the AMG smoothing-solve phase, with Jacobi
iterations. This approximation can be written as a convergent Neumann series whose terms are composed of
highly parallel sparse matrix vector multiplications. The result is an algorithm that substantially decreases setup
and solve time, compared to state-of-the-art, for these challenging linear systems.

3

Outline

• Combustion Modelling with PeleLMeX
• ILU Smoothers for C-AMG

• Jacobi Iterations for approximating Sparse Triangular Solve
• Handling Non-Normal Triangular Factors

• Computational Results
• PeleLMeX
• Deeper dive into performance gains

• Conclusions and Future Work

4

PeleLMeX: a low Mach number reactive flows solver at the ExaScale

• Key features:
• Solve the multi-species Navier-Stokes equations in the low-Mach number

limit

• Detailed chemistry and transport based on standard CHEMKIN format

• Spectral deferred correction (SDC) to couple slow and fast physics-
chemical processes while enforcing the low Mach velocity divergence
constraint

• Embedded boundary method to include complex geometry

• AMR supported by the open-source AMReX library

• Ported to the next generation of GPU-accelerated supercomputers

Turbulent low swirl burner hydrogen-air
flame

Available on github https://amrex-combustion.github.io/PeleLMeX/

5

PeleLMeX: a low Mach number reactive flows solver at the ExaScale

• A linear solver intensive algorithm:
• In the low Mach number limit, the velocity divergence is constrained by the diffusion/reaction processes

occurring in the gaseous mixture

• A fractional-step approach is employed:

1. tn+1* velocity Un+1* is predicted using the momentum equation

2. A projection step is then performed to enforce the divergence constraint, solving the linear system:

3. Update velocity:

6

PeleLMeX: a low Mach number reactive flows solver at the ExaScale

• Complex geometries are represented using an embedded
geometry (EB) approach:

• The (uniform) rectangular mesh is cut by the irregular shape of the

computational domain

• This technique can produce arbitrarily small cut cells in the domain,

possibly raising robustness and stability issues for classical finite

volume scheme (CFL type conditions)

• Additionally, the modifications of the linear operator stencils can lead

to particularly ill-conditioned systems
Schematic of the EB approach

used in AMReX

7

Challenge problem: reactivity-controlled compression ignition

• Performing direct numerical simulation of multi-injection ignition
behavior in representative engine conditions:

• At scale, on ½ of the Frontier ExaScale platform (>4000 MI250X AMD GPUs)

• Typical engine conditions: complex multi-species mixture (~50 chemical

species, ~300 reactions) at high pressure and temperature

• Including a realistic representation of an internal combustion

engine (ICE) piston bowl geometry

• Spatial resolution requirements leads ~50B DoF, concentrated near

the highly reactive areas4 turbulent C12H26 jets into the
piston-bowl geometry (PeleLMeX)

CAD of a typical ICE
configuration

8

ILU(k), ILUT Error Smoothers in C-AMG

• Consider the solution of the linear system 𝐴𝐴𝐴𝐴 = 𝑏𝑏, with 𝐴𝐴 sparse, symmetric, highly ill-conditioned.

• When solving using C-AMG, the incomplete LU factorization can be employed as a smoother.

• Direct sparse triangular solves are comparatively slow on GPUs.

• We instead consider an iterative approach [1,2] with scaled factors to solve the triangular systems
at each of the (pre/post) error smoothing steps.

• With 𝐴𝐴 ill-conditioned, we may consider equilibration techniques, but can result in highly
nonnormal factors.

[1] Chow E, Patel A. “Fine-Grained Parallel Incomplete LU Factorization” SIAM SISC 2015.
[2] Anzt H, Chow E, Dongarra J. “Iterative sparse triangular solves for preconditioning” European conference on parallel processing 2015.

9

Iterative Solution of Triangular Solves

• Jacobi iteration for solving 𝐴𝐴𝐴𝐴 = 𝑏𝑏, define the iteration matrix 𝐺𝐺 = 𝐼𝐼 − 𝐷𝐷−1𝐴𝐴 and iterate as

𝐴𝐴(𝑘𝑘+1) = 𝐺𝐺𝐴𝐴(𝑘𝑘) + 𝐷𝐷−1𝑏𝑏 (1)

• For the upper triangular solve, we compute 𝑈𝑈𝐴𝐴 = 𝐷𝐷−1𝑏𝑏, 𝑈𝑈 = 𝐼𝐼 + 𝑈𝑈𝑠𝑠, where 𝑈𝑈𝑠𝑠 is strictly upper
triangular (analogous solve for 𝐿𝐿 = 𝐼𝐼 + 𝐿𝐿𝑠𝑠).

• Jacobi diverges for nonnormal matrices, such as upper and lower triangular matrices.

• Note also that we obtain Neumann series since, for 𝑓𝑓 = 𝐷𝐷−1𝑏𝑏, (1) can be rewritten as

𝐴𝐴(𝑘𝑘+1) = 𝑓𝑓 − 𝑈𝑈𝑠𝑠𝑓𝑓 + 𝑈𝑈𝑠𝑠2𝑓𝑓 −⋯+ (−1)𝑘𝑘𝑈𝑈𝑠𝑠𝑘𝑘𝑓𝑓
= (𝐼𝐼 − 𝑈𝑈𝑠𝑠 + 𝑈𝑈𝑠𝑠2 − ⋯+ −1)𝑘𝑘𝑈𝑈𝑠𝑠𝑘𝑘 𝑓𝑓

= (𝐼𝐼 − 𝑈𝑈𝑠𝑠)−1𝑓𝑓

10

Mitigating Nonnormality in the Jacobi Iteration

• At each level of the V-cycle we can mitigate divergence using row and column scaling on 𝐿𝐿 and 𝑈𝑈
directly.1

• Ruiz scaling [3] or simply the incomplete 𝐿𝐿𝐷𝐷𝑈𝑈 factorization (row scaling) can be applied.

• In doing so, we minimize the departure from normality of the triangular factor.

𝑑𝑑𝑑𝑑𝑑𝑑 𝐵𝐵 = | 𝐵𝐵 |𝐹𝐹2 − | 𝐷𝐷 |𝐹𝐹2 ,

where 𝐷𝐷 is the diagonal matrix containing the eigenvalues of 𝐵𝐵.

1For the applications we consider, we need only scale 𝑈𝑈, but this strategy can be used for both 𝐿𝐿 and 𝑈𝑈.

[3] Knight PA, Ruiz D, Uçar B. “A symmetry preserving algorithm for matrix scaling” SIAM Journal on matrix analysis and applications. 2014

11

Results

Departure from normality when applying ILU(0) to several matrices before scaling
(columns 3 and 4) and after Ruiz scaling (column 5) and the incomplete LDU (column 6).

First five come from SuiteSparse Matrix Collection and last three are extracted from
PeleLM (with N = 331, 2110, and 14186).

12

ORNL Summit : PeleLMeX Application Performance

• Solver applied to Nodal Projection
• 1 Level of AMR (mesh refinement) with a mesh

size of 512x512x256.
• EB volume fraction 1.88e-3
• Solver is applied at the finest level (no AMReX

MLMG coarsening)
• 100 time steps

• HYPRE solve :
• ILU0 applied to finest level of BoomerAMG
• GMRES + BoomerAMG + ILU0 on diagonal

block
• Hypre solve is a sizeable fraction of the total time

per time step
• ~12 million unknowns per solve

13

ORNL Summit : Preconditioner Setup

• ILU0 applied to finest level of BoomerAMG
• Two-Stage Gauss-Seidel applied to all other

levels [1]
• Solver performance is for an optimized set of

parameters
• Robust search over Boomer AMG parameter

space (1000s of trials)
• 13 Lower, 5 Upper Jacobi Iterations

• Row scaling applied to U
• Use of Jacobi iteration removes the expensive

solve analysis stage of the preconditioner setup

[1] Mullowney et al. “Preparing an Incompressible-Flow Fluid
Dynamics Code for Exascale-Class Wind Energy Simulations” SC21.

14

ORNL Summit : Solve

For the PeleLMeX matrices, ILU0-preconditioned solvers are more effective at driving down the convergence of
the GMRES solver.

15

ORNL Summit : Total Time

Effectiveness of ILU0-preconditioned solver (reduced iterations and lower preconditioner setup) results in a
significant reduction in time to solution.

16

Porting to Crusher

• Hypre ILU Algorithms were coded towards Nvidia architectures
• Heavy reliance on UVM for ILU(k) and ILUT algorithms as well as reordering algorithms
• In the latter case, this includes RCM host implementations and some other key code components

related to Schur Compliment based solves.

• Nvidia Data Types were embedded in algorithm APIs
• csrsvILU0_t, cusparseSolvePolicy_t, … data types were passed in many methods
• Porting to Crusher required generalizing these interfaces. Hardware specific functions calls at key

places:
ILU0 factorization (Rocpsarse)
Forward and Backward triangular solve (Rocsparse)
Jacobi Iterative triangular solve written in Cuda (hipcc did all the heavy lifting)

• Porting was done in 1-2 weeks to get minimal implementation that ran successfully on Crusher
• Block-Jacobi ILU0

17

Crusher vs Summit : Solve Performance

• For small numbers of GPUs, Crusher solve
throughput is roughly equivalent to Summit with
50% more GPUs
• 4 MI250 ~ 6 V100s
• 8 MI250 ~ 12 V100s

• Strong scaling is the point at which additional
compute hardware no longer provides performance
gain.
• ~400k DoFs/Crusher
• ~300k DoFS/Summit
• At the strong scaling limit, Crusher is roughly 40-50%

faster
• Significant optimization potential remains

• Optimization of SpMVs with L/U
• Hardware level optimization

18

Crusher vs Summit : Preconditioner Setup Performance

• Preconditioner setup costs included full
BoomerAMG setup plus ILU0 factorization at level
0.

• Rocsparse ILU0 factorization is substantially faster
than Cusparse equivalent. This accounts for much
of the difference between these plots
• Other key factors include AMG RAP calculation

(SGEMM)

• The cause of the large error bars is not known
• Each data point is an average of 5 trials.

Sometimes, an individual run generates poor
data.

19

Crusher vs Summit : Total Performance

Crusher provides impressive performance gains over Summit for block-ILU0, C-AMG, GMRES linear solvers!

20

Conclusions and Future Work

• Jacobi iterations are a fast and powerful alternative to preconditioned AMG solves that require
sparse triangular solve

• Fast Implementation based on SpMV
• For U solve, Ruiz or Row scaling required to get a convergent series
• Also effective with Schur-complement based ILU smoother algorithms

• We’ve explored other matrices from the UFlorida Sparse Matrix collection
• Often able to find a set of ILU/AMG parameters that yield a faster solve
• In most cases, the additional preconditioner setup costs (ILU factorization) resulted in a

slower time to solution.
• Why was it so successful for PeleLMeX matrices?

• Faster factorization (ILU(k) and ILUT) could make this more generally useful
• These run on Nvidia architectures with Unified Memory

• Next steps: Get this running in the PeleLMeX

NREL/PR-2C00-81907

	Abstract
	Outline
	PeleLMeX: A Low Mach Number Reactive Flows Solver at the ExaScale
	PeleLMeX: A Low Mach Number Reactive Flows Solver at the ExaScale
	PeleLMeX: A Low Mach Number Reactive Flows Solver at the ExaScale
	Challenge Problem: Reactivity-Controlled Compression Ignition

	ILU(k), ILUT Error Smoothers in C-AMG
	Iterative Solution of Triangular Solves
	Mitigating Nonnormality in the Jacobi Iteration

	Results
	ORNL Summit : PeleLMeX Application Performance
	ORNL Summit : Preconditioner Setup
	ORNL Summit : Solve
	ORNL Summit : Total Time
	Porting to Crusher
	Crusher vs Summit : Solve Performance
	Crusher vs Summit : Preconditioner Setup Performance
	Crusher vs Summit : Total Performance

	Conclusions and Future Work

